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Similarity solutions in one-dimensional relativistic gas dynamics

P. Carbonaro
Dipartimento di Matematica dell’'Universitdi Catania, via A. Doria 6, 1-95125 Catania, Italy
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The Liang equation which describes the one-dimensional motion of a relativistic fluid in the hodograph
plane is treated with the methods of Lie group analysis. In particular, it is shown that this equation admits Lie
symmetries if the sound speed satisfies a differential condition. A certain number of similarity solutions are
also given in correspondence to some specific determinations of the sound speed which are of physical interest.
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[. INTRODUCTION which are usually completely solvable. Having once found
the groups of transformations, one can obtain a humber of
Finding analytical solutions for the equations describinginteresting results among which is the possibility to reduce a
the motion of a relativistic fluid is, in general, difficult due to partial differential equation in two independent variables into
their nonlinear character. However, when one considers an ordinary differential equation in one independent variable,
one-dimensional flow, this problem can be overcome by carwhich is generally ammenable to one of the classical equa-
rying out a transformation which interchanges the roles ofions. These particular solutions are called “similarity solu-
dependent and independent variables. This procedure leatigns” [3]. When the equation contains “arbitrary ele-
to a linear equation, the hodograph equation of the flowments,” the theory gives a differential condition for them.
which was derived by Liangl]. The problem remains of This additional tie correspon(_js, in our case, to classes 01_‘
finding explicit solutions to this equation which contains anequations of state, among which one can select those physi-
“arbitrary element,” i.e., a variable coefficient deriving from cally motivated.
the particular equation of state choosen to characterize the This paper is organized as follows: In Sec. I, we derive
fluid. “Arbitrary elements” are functions or variable param- the linear equation which describes the relativistic flow in the
eters whose form is not knowa priori and can be assigned hodograph plane. In Sec. Ill we carry out its group analysis.
freely on the grounds of physical hypotheses about the natut® Sec. IV we consider some specific equations of state. In
of the medium under consideration. In our case, the use ofec. V we find the corresponding similarity solutions.
one equation of state rather than another, is a problem in
itself, in that it should be compatible with the general prin- Il. THE RELATIVISTIC FLUID
ciples of relativity(e.g., causality principle It is well known N L
thgt the classica?lquations of sytgte arg not only inappropriate Whlen t_hhe relat'Y'St'C. fluid dlsh assulmed dto _b(_e pe;}rfecf[,
to physically describe the behavior of a relativistic fluid, but "2 11SY: With zero viscosity and thermal conductivity, then it
also the equations governing the motion can assume a corft- described by the energy-momentum ter{stjr
pIicatgd structure from Fhe point of vi(_ew of th(_e _in;egratiop. Tab=(p+ p)uduP—pg®® (a,b=0,1,2,3, 1)
Equations of state coming from genuine relativistic consid-

erations, though more complicated at first sight, can, on thherep and i are, respectively, the hydrodynamic pressure
contrary, be enormously simplifying, in that they endow theand the total energy density measured in a frame in which
equation with a high degree of symmetry. To express thighe fluid is at restyu? is the normalized four-velocity oriented
concept, mathematicians have formulated a “simplicity cri-towards the future, angj®” is the metric tensor, so that
terion” which states that the arbitrary elements of an equagaby2y®=1. For simplicity, units are chosen which make the
tion must be choosen in such a way as to make it somewhgfe|ocity of light equal to unity ¢=1).

easy to obtain explicit solution2]. The “simplicity crite- The equations governing the motion of such a fluid are the
ron -|S a natur:al prOdUCt of group anaIySIS, |.e.., the math'equation expressing the conservation of the energy-
ematical teChnlque whose Ob]eCt is the determination of thﬁqomentum tensor and the equation expressing the conserva-

c_omplete invariance group .admitted' by a differential equation of material density, which, respectively, read
tion or a system of differential equations.

The theory of group analysis was discovered and applied V,T3=0, V_(pu®)=0 2
by S. Lie in the nineteenth century, but only in the last de-
cades has it become a common tool for both mathematiciarighere V, is the covariant derivative and the rest mass
and physicists. The method consists of looking for the infini-density. It is also useful to introduce the specific internal
tesimal generators of a group of point transformations whictenergye and the relativistic enthalpy density defined, re-
leave the equation under study invariant. An important poinspectively, by
of the Lie theory is that the conditions for an equation to
admit a group of transformations are represented by a set of ~ J dp &)

e=——1, w= .
p+u

linear equations, the so-called “determining equations,” p
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The first law of thermodynamics reade=Tds— pd(1/p), 3(6,X) (W, X) (0,t)  a(w,t)
with T as the absolute temperature anithe specific entropy. LX) anhy 2(tX) +tanhd a0 T Ik =0,
Making the assumption that the flow is isentropic one has ’ ' ’ ’
simply whereupon the multiplication by
de=(p/p?)dp. (4) at,x) dt 9x It Ix .
a(w,0)  ow a6 a0 ow

To close systen{1)—(3) we need an equation of state

relating the quantitieg., p, ands, i.e., u=pu(p,s). As the  yje|ds the linear partial differential equations sought in the
speed of sound in the rest frame of the fluid is defined meknownsx(w ¢) andt(w, 6). Here

=./dpldu, we have

2 > i o X _tanhg o +c2 o =0 11
dw_ s —g~Cstanh? ——tanhp —o +cg - =0, (11)
d : 5
p P
X X ot ot
Let (R,4,9) be a given Minkowski space time, whegeis S tanhd ——tanhy — 4 — =0. (12

the flat metric,x a point belonging toR,, and x? (a
=0,1,2,3) pseudo-Cartesian coordinatesxpbgrg®=(+1,
-1,-1,-1).

As we confined our study to the one-dimensional flow
within the flat spacd?,, we chose an orthogonalized couple
of constant congruencédg?, 2}, such that

It is easy to check that Eq12) is identically satisfied if
one writest andx in terms of a potential functio¥ (w, 0)

t=e "(¥,coshh—V ,sinhg),

x=e "(W¥,sinhd—T ,coslp),

Gabé®E°=1, Qapl®("=-1
v
Gant®"=0, 9p£%=3p(?=0 (6) Vo=
which imply o
W= ETR (13
t:Xafaa X=Xa§a, Xazfaﬁ"'ga&v (7) . ) . )
afterwards the insertion of E413) into Eq. (11) yields the
while the four velocity can be written as Liang equatior{1]
W £ ), ® oWyt (1= e Wy =W yy=0, cs=cyw). (14

So that the problem represented by E@.and (10) is re-
duced to the search for solutions to the linear equatia,
which contains the arbitrary elemenf=cg(w) depending
an the equation of state characterizing the relativistic fluid.
In Sec. lll we shall find the determinations of=cg(w)
which endow Eq(14) with Lie symmetries.

where y=1/\/1— 12 is the Lorentz factor and the relative
velocity.

With the foregoing hypotheses, the equations of the rela-
tivistic one-dimensional flow in three-vector notation read

ow a6 oW a6
W+ctanhﬁ—t+tanh9—+c35=0, (9)
Ill. THE GROUP ANALYSIS OF EQ. (14
a6 aw a6 ow Background and procedures of the modern Lie group
< Ttanhy —-+tanty - + —--=0, (10 theory are well described in literatuf2,3,5,§. The paper by
Bluman and Kumej7] is particularly useful for our analysis.
where Essentially we require the invariance of Eti4) under the
infinitesimal transformations
f=arctathv and cs=cg(w).
w=w+eW(w,0,¥)+0(&?), (15)
Liang [1] has shown that the nonlinear systéf and A
(10) can be transformed into a linear second order partial 0=0+e0®(w,0,¥)+0(e?), (16)
differential equation by using the hodograph method, which
essentially consists of interchanging of the roles of \if:\lr+gg(W, )W +0(&?). (17

dependent and independent variabldsv(x,t),8(x,t)}

={x(w, d),t(w, #)}. This can be easily carried out by writ-
ing the partial derivatives in Eq$9) and(10) in the form of
Jacobians, i.e.,

, (0,1)
S ax,t)

aw,x) d(0,Xx) a(w,t)
(tx) +cg tanhd X +tan a(x,t)

The application of the Lie conditions for the invariance of
Eq. (14) yields an overdetermined set of linear equations in
the unknownsW, O, and g, the so-called “determining
equations”

QOwwt (1—-0)0w—0ps=0, g=ci(w), (18)
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40wt (1-9)0,,— 0 yy+29,=0, (19 d |1 d (0
i v g\/fm —= 3y In(@F) =—(T)=w2:const,
Wi~ (1= a)Wy,— Wyy+[q' (W)/q]W— 20 g, =0, F
(20 (32
q0,—W,=0 (21) while from Eqgs.(26), (29), and(18) we deduce
2
20(0 ;= W,,) +7' (W)W=0, (22 d N d [Q) 5 Q)_
—~|+(1-q) 7 | =| +w?| —=]| =0,
Wy =0 gy =Wy =0y =0. (23 (33

Eliminating ® from Eqgs.(21) and (22) we obtain the re-

lationship
el
el e

whereupon it is easy to deduce from E¢k9) and(20) that

(24

1(/q'(w) 1
972 [(W‘G”)W}g'
1(/q'(w) 1
QW‘E[(W‘a“)W]W 29
we have, therefore,
g= % W+ const, (26)
where
q'(w) 1
=———+1 2
Q 24 q (27)
Making g satisfy Eq.(18), we obtain
2
{(Q’(W)+Q—+9—Q)W2} =0, (28)
2 g w
from which we see thav has the form
W= 1o (29
VE(w)’
wheref () is an arbitrary function for the time being, and
2
Q° Q 30

F(W)Z— Q’(W)+7+ E_Q .

Before going on to the determination of the infinitesimal

generators, we notice that E{.4) admits an infinite param-
eter group ifF(w)=0, i.e.,

’ Q2 Q _ 1 1 3 ’ 2
Q' (w)+ -+ E_Q_ 2¢ {aq"(w)—z[q"(w)]
+2q'(w)—(1-q)?=0. (31)
On the other hand, fdf(w) # 0, the insertion of Eq(29)
into Eq. (24) yields

so that if, and only if,q=c§(w) satisfies Eqs(32) and(33),
Eq. (14) admits a Lie group of symmetries.

For =0, both Eqs(32) and(33) are satisfied wheqF
=k=const, i.e.,

aq’(w)—3[a’(w)]?+q’(w)—(1—q)?+2kq=0,
(39

and

f"(9)=0. (35
We now derive the infinitesimal generator corresponding
to gF=const. Equation$26) and (29) yield, respectively,

g‘I’z(%WwLC

0 _

JF

while from Egs.(21) and(22) we obtain

v, W= Ja(A6+B);

W q’(w) )
@W—F, @0—WW— WW—O,
hence
®—Af dW+D
\/a 1

where the arbitrary constangs B, C, andD are the group
parameters.

In Sec. IV we shall discuss the equations of state corre-
sponding to conditior(31) (which gives an infinite group
and to condition(34).

IV. SPECIFIC EQUATIONS OF STATE

(8 When Eq.(31) holds true, Eq(14) admits an infinite
group of transformations and maps into the wave equation

X o= Xgs=0, (36)
where
X=¢p(w)¥(w,d) and o= q’(vv)i—\/za(l—q)
on condition thag’ (w)—2(1—q)#0.
On the other hand, let us suppose tQat 0, i.e.,
q'(w)—2(1-q)=0. (37)
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Keeping in mind thag=c2Z=dp/du and the definition3)  which yields
of enthalpy, we can write Eq37) as )
1 (3-yu—bla 47
(m+P)mpp=2pp(1—pp)=0, (38 q 3 1_\/ﬁ/a !

hence we obtain the equation of state in parametric form and

p(r)=a(sinhr+7)+b, p(7r)=a(sinhr—7)—Db @9 —b 1-9a(u— b)~ 12
p= 3 1_a(M_b)fl/2

wherea andb are two constants. The speed of soundds (48

=tanh@/2)<1. For r—~ andb=0 one hasu=p andc,

=1. The latter characterizes an incompressible relativistid his pressure lavwith b=0) has been derived by Tolman

fluid. Both equations of state are compatible with the causalln searching for analytical solutions to Einstein’s gravita-

(a and b are constanis

ity principle. tional field equations. In that context it has proved to be
The transformation taking Eq14) into Eq. (36) is, this somewhat helpful, since for large values pfits approxi-
time, mate form isu— 3p=constx 2 which is that for a highly
compressed Fermi ga41,12.
X=V, ¢=In{e"+e?V—-1}. (40) In Table | the Lie symmetry vector fields associated with

the foregoing equations of state are listed.
It is worth mentioning that, with the foregoing equations

of state, even the nonlinear systég and(10) undergoes a V. SIMILARITY SOLUTIONS
remarkable simplification, in that it can be written in the o
form of two independent equations (i) Wheng=(y—1) the infinitesimal generators are
= = Aw
U;+UU,=0 andV;+VV,=0, (42) W=Ag+B, ®:y_1+D'

if one choose as dependent variablés tanh@+¢) and V
=tanh@- o) [8]. y—2

(b) We now consider the case in which Ed4) is invari- gV = A 2y=1) 6+C|V.

ant under a four-parameter Lie group of point transforma-

tions, this happens wheg(w) satisfies Eq(34). Here we (1) For A=1, B=D=0, andC arbitrary, the characteris-
give some solutions. . _ tic equation reads
(i) g=(y—1)=const, which corresponds to the equation

of statep=(y—1)u for a barotropic fluid (Ky<2). In dw dé dv

this casek=(y—2)?%/2(y—1), in particular, fork=2/3 one T w [ -2 : (49
hasp= u/3, which characterizes a three-dimensional incom- [ 0+C|¥
pressible relativistic flow9]. y=1 [2(y-1)
(ii) Another interesting solution correspondingke 2/3 . S .
is obtained by observing that E(B4) is satisfied by from which we get the similarity variable
W2
q'(w)=2(3-0q), (42) Uzez—ﬁ, (50)
which, in terms of the pressupeand energy density, reads and the similarity solution
(put p)ﬂpp_zﬂp(l_ﬂp/?’), (43 W Cy—1 v
whose solution in parametric form is V=| 0+ m) ex;{z(y_ oW F(o.C).
(51

pu(r)=a(sinhr—7)+b, (a and b are constanjs

) ) If we make Eq.(51) satisfy Eq.(14) we obtain the ordinary
p(7)=(a/3)[sinhr—8sinf(7/2)+37]-b.  (44)  (ifferential equation irF(z,C)

Forb=0, Eq.(44) is the well known equation of state for a (y—2)2
completely degenerate Fermi gd9]. oF ;o(0,C)+[1+Cyy—1]F (0,C)+ 16(——1) F(o,C)
(i) If k=2/3, Eq.(34) also admits the solution Y
=0, (52)
q'(w)=54(3—3a)(1-30). (45

) _ which transforms into a Bessel's equation
Using Eq.(3), this becomes

EF(O+E (O +(£-n)f=0, n=Cyy-1 (53

dg 2 dp
(Pt 4) G =3 93— VBDA-\Ba), a=gr (48 i
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TABLE I. Lie symmetry vector fields of Eq14).

Symmetry vector fields for

Sound speeds

(1) barotropic,(2) Fermi, and(3) Tolman flows

Q) g=vy-1 J w y—2 d
L=l ot 5190 T 20-1) P Gy
J
LB:W/! Le=y— ,7,/ Lozﬁ-
_ 1 _ y—2
[LAvLB]_ilT,yLD' [LA'LD]_i B~ 2(,)/ l)
[La,Lc]l=[Lg.Lcl=[Lg,Lp]=[Lc,Lp]=0.
(2 g=3(1-e"?"
3 L J—a 1+J— 6 9
"1=V3a 7 3vg "
J 1 J
LB:\/am*Wal/f Le= l/f(w
J
LD:ﬁ'
[LA,LB]:_LD, [LA,LD]:_LB,
[La,Lc]l=[Lg,Lc]=[Lg,Lp]=[Lc,Lp]=0.
1_\/5 _ 3— \/—
3 — 2w
®) m © LA_J—G (1 J—) 76
2
+(\/— ) l/,_df
J J J
Le=1a z+vav 77 Le= Mp Lo=755-
2
[La,Lg]=—Lp, [LAvLD]__LB+‘/_§LC:

[La,Lcl=[Lg,Lc]=[Lg,Lp]=[Lc,Lp]=0.

_ y—2
F=o""(§), &= o' (54)
2yy—1
For n integer we have the linearly independent solutions
W n/2
F{ 1_05 0+C—S
V=exp — =~ W
2cg w
0__
CS
1-c?
_ 2 2/ 2
X J, _203 06— (w /CS)),
cs=Vy—1. (55

As the Riemann invariants constant along the characteris-

tic lines of Egs.(9) and(10) are defined by9]

Ri=9if

we see that Eq55) can be written as

dw

Cs(W)’ (56)

P =ex

1-¢2 R*\ "2 1-¢c2
_ _ > IRTR™
TC?W)(R) ‘Jn ZCS R™R .
(57)

(2) ForA=D=0, B=1, andC arbitrary, the characteris-
tic equation reads

dW de dv¥

1 0 Ccv (58

The similarity variable and the similarity solution are, re-
spectively,

z=60, V=e““F(0,C) (59)
with F(6,C) satisfying the equation
Foe(0,.C)—C[(2—y)+(y—1)C]F(6,C)=0. (60

(iil) The Fermi gaslin this case the expressions ft, O,
andgV¥ are

V3 [1+43q
W= \/q(A6+B), ®=A7In(1_m +D, (61)
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- ( A6+B c
g 3\/a
(1) ForA=1,B=D=0, andC arbitrary the characteristic
equation is
dw do 3 dwv 62
a\F v3 [1+43q 0
I -—=+C|V¥
1-3q 3Vq
The similarity variable is
V3 [1+3q
o= 60— ¢?, = I 63
%, o= ( -39 (63)
and the similarity solution reads
¥=1(1/39)—1(6+¢)°F(0,C), (64)

whereF(o,C) satisfies the ordinary differential equation

F(o,C)
0F 4o(0,C)+(1+C)Fy(0,C)+ —5— =0. (65)
If we set
= Pf(g), &=\ol3, (66)

Eq. (65) becomes a Bessel's equation of order C

E1"(&)+ (&) +(£2-n?)f(£)=0, (67)
therefore, ¥ reads
1/2 C/2
%(%—1) (Z%: 35—t (69

The expressions fof+ ¢ appearing in Eq(68) are nothing
more than the Riemann invariants

. <1+ \/3q>
RT=60x— In| ——].
2 \1-3q

(69

(2) ForA=D=0, B=1, andC arbitrary, the characteris-

tic equation reads

The similarity variable and the similarity solution read, re-

spectively,

312)C
F( alc)l

1 1)1’2(1+\/£
3q 1-3q

with F(6,C) satisfying the equation

F6(6,C)—(C?—1/3)F(6,C)=0.

(iii) When one considers the Tolman pressure law one has

2901
3—/3q
W=\q(A6+B), O= A—I +D,
V= ([ 2 (AG+B)+C|W
g a-

(1) ForA=1,B=D=0, andC arbitrary, the characteris-
tic equations are

dw de _ dv
SEC ==

The integration of the first equation yields the similarity vari-
able

6> — p? v3 In(s_\/ﬁ)

g= — y = — .

The similarity solution is
¥=(3-30)(1- 30)(6+ ¢)°F(4,C),

whereF(o,C) satisfies the ordinary differential equation

F(o,C)
12 =0,

oF ;.(0,C)+(1+C)F, (0,C)+

with the positiong66) we obtain

6+ Cl2
¥ =1(3—3q)(1— @)(ﬁ) Jn(

wherelJ, is the Bessel's function of order=C (n integey).
The Riemann invariants this time read

0 — o2
3 t

vy [3-
0+—| ( \/_ =0+ ;
1-3q
so that the similarity solution can also be written as
R+ C/2 R+R— 1/2
wJ(SF)(lF)( )Jn<3>

(2) ForA=D=0, B=1, andC arbitrary, the characteris-
tic equations read

dw % dv
Va0 (Jarow

The similarity variable and the similarity solutions are, re-
spectively,

(3 \/—)(WC-%—B
(1 \/—)(WC+1

whereF(6,C) satisfies the ordinary differential equation

5 F(6.C)

Fs(0,C)—3(C+v3)(3C+V3)F(6,C)=0.
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VI. CONCLUSIONS tions lead to some well known pressure-energy density rela-
tions, i.e.:(1) the equation of state for a barotropic flo()

A well known mathematical technique to obtain explicit the Fermi law f letelv d te relati
solutions consists of finding the Lie groups which leave the € Fermi preéssure faw for a completely degenerate relativ-

equation under consideration invariant. In particular, theSti¢ 9as, and surprisingly ?nqugm) the Tolman equation
equation describing a relativistic flow in the hodograph plane®! State with which Einstein's field equations also admit ana-
contains an “arbitrary element,” the sound spea@w), so lytical solutions. The above mentioned pressure laws dp not
that the conditions for the existence of Lie symmetries aréXhaust the solutions to Eq82) and (33) and other physi-
expressed by the additional Eq&2) and (33) connecting  cally interesting equations of state may be found by further
g=c2 andw (the enthalpy densily Once these are solved analysis. _ o
we can determine all the possible forms of the sound speed Moreover, we found that Eq14) admits an infinite group
which admit a four parameter goup of invariance. Thenof symmetries in correspondence to the nontrivial pressure
straightforward calculations permit one to obtain similarity law (39) which satisfies the conditions for a real relativistic
solutions. flow. In this case, Eq(14) is integrable in an elementary
This procedure, which may appear more mathematicallyvay, while the systen{9) and (10) can be decoupled into
than physically motivated, gives some interesting and entwo inviscid Burger’'s equations. This result might be useful
couraging results in that the solutions of the additional equafor testing numerical codes.
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