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Similarity solutions in one-dimensional relativistic gas dynamics

P. Carbonaro
Dipartimento di Matematica dell’Universita` di Catania, via A. Doria 6, I-95125 Catania, Italy

~Received 5 December 1996!

The Liang equation which describes the one-dimensional motion of a relativistic fluid in the hodograph
plane is treated with the methods of Lie group analysis. In particular, it is shown that this equation admits Lie
symmetries if the sound speed satisfies a differential condition. A certain number of similarity solutions are
also given in correspondence to some specific determinations of the sound speed which are of physical interest.
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PACS number~s!: 51.10.1y, 02.20.Sv
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I. INTRODUCTION

Finding analytical solutions for the equations describ
the motion of a relativistic fluid is, in general, difficult due
their nonlinear character. However, when one consider
one-dimensional flow, this problem can be overcome by c
rying out a transformation which interchanges the roles
dependent and independent variables. This procedure l
to a linear equation, the hodograph equation of the flo
which was derived by Liang@1#. The problem remains o
finding explicit solutions to this equation which contains
‘‘arbitrary element,’’ i.e., a variable coefficient deriving from
the particular equation of state choosen to characterize
fluid. ‘‘Arbitrary elements’’ are functions or variable param
eters whose form is not knowna priori and can be assigne
freely on the grounds of physical hypotheses about the na
of the medium under consideration. In our case, the us
one equation of state rather than another, is a problem
itself, in that it should be compatible with the general pr
ciples of relativity~e.g., causality principle!. It is well known
that the classical equations of state are not only inapprop
to physically describe the behavior of a relativistic fluid, b
also the equations governing the motion can assume a c
plicated structure from the point of view of the integratio
Equations of state coming from genuine relativistic cons
erations, though more complicated at first sight, can, on
contrary, be enormously simplifying, in that they endow t
equation with a high degree of symmetry. To express
concept, mathematicians have formulated a ‘‘simplicity c
terion’’ which states that the arbitrary elements of an eq
tion must be choosen in such a way as to make it somew
easy to obtain explicit solutions@2#. The ‘‘simplicity crite-
rion’’ is a natural product of group analysis, i.e., the ma
ematical technique whose object is the determination of
complete invariance group admitted by a differential eq
tion or a system of differential equations.

The theory of group analysis was discovered and app
by S. Lie in the nineteenth century, but only in the last d
cades has it become a common tool for both mathematic
and physicists. The method consists of looking for the infi
tesimal generators of a group of point transformations wh
leave the equation under study invariant. An important po
of the Lie theory is that the conditions for an equation
admit a group of transformations are represented by a se
linear equations, the so-called ‘‘determining equation
561063-651X/97/56~3!/2896~7!/$10.00
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which are usually completely solvable. Having once fou
the groups of transformations, one can obtain a numbe
interesting results among which is the possibility to reduc
partial differential equation in two independent variables in
an ordinary differential equation in one independent variab
which is generally ammenable to one of the classical eq
tions. These particular solutions are called ‘‘similarity sol
tions’’ @3#. When the equation contains ‘‘arbitrary ele
ments,’’ the theory gives a differential condition for them
This additional tie corresponds, in our case, to classes
equations of state, among which one can select those ph
cally motivated.

This paper is organized as follows: In Sec. II, we deri
the linear equation which describes the relativistic flow in t
hodograph plane. In Sec. III we carry out its group analys
In Sec. IV we consider some specific equations of state
Sec. V we find the corresponding similarity solutions.

II. THE RELATIVISTIC FLUID

When the relativistic fluid is assumed to be perfe
namely, with zero viscosity and thermal conductivity, then
is described by the energy-momentum tensor@4#

Tab5~p1m!uaub2pgab ~a,b50,1,2,3!, ~1!

wherep andm are, respectively, the hydrodynamic pressu
and the total energy density measured in a frame in wh
the fluid is at rest,ua is the normalized four-velocity oriente
towards the future, andgab is the metric tensor, so tha
gabuaub51. For simplicity, units are chosen which make t
velocity of light equal to unity (c51).

The equations governing the motion of such a fluid are
equation expressing the conservation of the ener
momentum tensor and the equation expressing the conse
tion of material density, which, respectively, read

¹aTab50, ¹a~rua!50 ~2!

where ¹a is the covariant derivative andr the rest mass
density. It is also useful to introduce the specific intern
energye and the relativistic enthalpy densityw defined, re-
spectively, by

e5
m

r
21, w5E dp

p1m
. ~3!
2896 © 1997 The American Physical Society
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56 2897SIMILARITY SOLUTIONS IN ONE-DIMENSIONAL . . .
The first law of thermodynamics readsde5Tds2pd(1/r),
with T as the absolute temperature ands the specific entropy.
Making the assumption that the flow is isentropic one h
simply

de5~p/r2!dr. ~4!

To close system~1!–~3! we need an equation of sta
relating the quantitiesm, p, ands, i.e., m5m(p,s). As the
speed of sound in the rest frame of the fluid is defined
cs5A]p/]m, we have

dw

dr
5

cs
2

r
. ~5!

Let (R4 ,g) be a given Minkowski space time, whereg is
the flat metric, x a point belonging toR4 , and xa (a
50,1,2,3) pseudo-Cartesian coordinates ofx, sgngab5(11,
21,21,21).

As we confined our study to the one-dimensional flo
within the flat spaceR4 , we chose an orthogonalized coup
of constant congruences$ja,za%, such that

gabj
ajb51, gabz

azb521,

gabj
ajb50, ]bja5]bza50, ~6!

which imply

t5xaja , x5xaza ,
]

]xa 5ja

]

]t
1za

]

]x
, ~7!

while the four velocity can be written as

ua5g$ja1nza%, ~8!

whereg51/A12n2 is the Lorentz factor andn the relative
velocity.

With the foregoing hypotheses, the equations of the re
tivistic one-dimensional flow in three-vector notation read

]w

]t
1cs

2tanhu
]u

]t
1tanhu

]w

]x
1cs

2 ]u

]x
50, ~9!

]u

]t
1tanhu

]w

]t
1tanhu

]u

]x
1

]w

]x
50, ~10!

where

u5arctanhn and cs5cs~w!.

Liang @1# has shown that the nonlinear system~9! and
~10! can be transformed into a linear second order par
differential equation by using the hodograph method, wh
essentially consists of interchanging of the roles
dependent and independent variables$w(x,t),u(x,t)%
⇒$x(w,u),t(w,u)%. This can be easily carried out by wri
ing the partial derivatives in Eqs.~9! and~10! in the form of
Jacobians, i.e.,

]~w,x!

]~ t,x!
1cs

2 tanhu
]~u,x!

]~ t,x!
1tanhu

]~w,t !

]~x,t !
1cs

2 ]~u,t !

]~x,t !
50,
s

y

-

l
h
f

]~u,x!

]~ t,x!
1tanhu

]~w,x!

]~ t,x!
1tanhu

]~u,t !

]~x,t !
1

]~w,t !

]~x,t !
50,

whereupon the multiplication by

]~ t,x!

]~w,u!
[

]t

]w

]x

]u
2

]t

]u

]x

]w
Þ0,

yields the linear partial differential equations sought in t
unknownsx(w,u) and t(w,u). Here

]x

]u
2cs

2tanhu
]x

]w
2tanhu

]t

]u
1cs

2 ]t

]w
50, ~11!

]x

]w
2tanhu

]x

]u
2tanhu

]t

]w
1

]t

]u
50. ~12!

It is easy to check that Eq.~12! is identically satisfied if
one writest andx in terms of a potential functionC(w,u)

t5e2w~Cwcoshu2Cusinhu!,

x5e2w~Cwsinhu2Cucoshu!,

Cw[
]C

]w
,

Cu[
]C

]u
, ~13!

afterwards the insertion of Eq.~13! into Eq. ~11! yields the
Liang equation@1#

cs
2Cww1~12cs

2!Cw2Cuu50, cs5cs~w!. ~14!

So that the problem represented by Eqs.~9! and ~10! is re-
duced to the search for solutions to the linear equation~14!,
which contains the arbitrary elementcs5cs(w) depending
on the equation of state characterizing the relativistic flu
In Sec. III we shall find the determinations ofcs5cs(w)
which endow Eq.~14! with Lie symmetries.

III. THE GROUP ANALYSIS OF EQ. „14…

Background and procedures of the modern Lie gro
theory are well described in literature@2,3,5,6#. The paper by
Bluman and Kumei@7# is particularly useful for our analysis

Essentially we require the invariance of Eq.~14! under the
infinitesimal transformations

ŵ5w1«W~w,u,C!1O~«2!, ~15!

û5u1«Q~w,u,C!1O~«2!, ~16!

Ĉ5C1«g~w,u!C1O~«2!. ~17!

The application of the Lie conditions for the invariance
Eq. ~14! yields an overdetermined set of linear equations
the unknownsW, Q, and g, the so-called ‘‘determining
equations’’

qgww1~12q!gw2guu50, q5cs
2~w!, ~18!
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qQww1~12q!Qw2Quu12gu50, ~19!

qWww2~12q!Ww2Wuu1@q8~w!/q#W22qgw50,
~20!

qQw2Wu50, ~21!

2q~Qu2Ww!1q8~w!W50, ~22!

WCC5QCC5WC5QC50. ~23!

Eliminating Q from Eqs.~21! and ~22! we obtain the re-
lationship

H WF lnS W

Aq
D G

w
J

w

5
Wuu

q
, ~24!

whereupon it is easy to deduce from Eqs.~19! and ~20! that

gu5
1

2 H S q8~w!

2q
2

1

q
11DWJ

u

,

gw5
1

2 H S q8~w!

2q
2

1

q
11DWJ

w

~25!

we have, therefore,

g5
Q

2
W1const, ~26!

where

Q5
q8~w!

2q
2

1

q
11. ~27!

Making g satisfy Eq.~18!, we obtain

H S Q8~w!1
Q2

2
1

Q

q
2QDW2J

w

50, ~28!

from which we see thatW has the form

W5
f ~u!

AF~w!
, ~29!

where f (u) is an arbitrary function for the time being, and

F~w!52FQ8~w!1
Q2

2
1

Q

q
2QG . ~30!

Before going on to the determination of the infinitesim
generators, we notice that Eq.~14! admits an infinite param
eter group ifF(w)50, i.e.,

Q8~w!1
Q2

2
1

Q

q
2Q5

1

2q2 $qq9~w!2 3
4 @q8~w!#2

12q8~w!2~12q!2%50. ~31!

On the other hand, forF(w)Þ0, the insertion of Eq.~29!
into Eq. ~24! yields
l

q

2
AF

d

dw H 1

AF

d

dw
ln~qF!J 52

f 9~u!

f
5v25const,

~32!

while from Eqs.~26!, ~29!, and~18! we deduce

q
d2

dw2 S Q

AF
D 1~12q!

d

dw S Q

AF
D 1v2S Q

AF
D 50,

~33!

so that if, and only if,q5cs
2(w) satisfies Eqs.~32! and~33!,

Eq. ~14! admits a Lie group of symmetries.
For v50, both Eqs.~32! and ~33! are satisfied whenqF

5k5const, i.e.,

qq9~w!2 3
4 @q8~w!#21q8~w!2~12q!212kq50,

~34!

and

f 9~u!50. ~35!

We now derive the infinitesimal generator correspond
to qF5const. Equations~26! and ~29! yield, respectively,

gC5S Q

2
W1CDC, W5

f ~u!

AF
5Aq~Au1B!;

while from Eqs.~21! and ~22! we obtain

Qw5
Wu

q
, Qu5Ww2

q8~w!

2q
W50;

hence

Q5AE dw

Aq
1D,

where the arbitrary constantsA, B, C, andD are the group
parameters.

In Sec. IV we shall discuss the equations of state co
sponding to condition~31! ~which gives an infinite group!
and to condition~34!.

IV. SPECIFIC EQUATIONS OF STATE

~a! When Eq.~31! holds true, Eq.~14! admits an infinite
group of transformations and maps into the wave equatio

Xww2Xuu50, ~36!

where

X5w~w!C~w,u! and w5
4Aq

q8~w!22~12q!
,

on condition thatq8(w)22(12q)Þ0.
On the other hand, let us suppose thatQ50, i.e.,

q8~w!22~12q!50. ~37!
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Keeping in mind thatq5cs
25dp/dm and the definition~3!

of enthalpy, we can write Eq.~37! as

~m1p!mpp22mp~12mp!50, ~38!

hence we obtain the equation of state in parametric form

m~t!5a~sinht1t!1b, p~t!5a~sinht2t!2b
~39!

wherea andb are two constants. The speed of sound iscs
5tanh(t/2)<1. For t→` and b50 one hasm5p and cs
51. The latter characterizes an incompressible relativi
fluid. Both equations of state are compatible with the cau
ity principle.

The transformation taking Eq.~14! into Eq. ~36! is, this
time,

X5C, w5 ln$ew1Ae2w21%. ~40!

It is worth mentioning that, with the foregoing equatio
of state, even the nonlinear system~9! and~10! undergoes a
remarkable simplification, in that it can be written in th
form of two independent equations

Ut1UUx50 and Vt1VVx50, ~41!

if one choose as dependent variablesU5tanh(u1w) and V
5tanh(u2w) @8#.

~b! We now consider the case in which Eq.~14! is invari-
ant under a four-parameter Lie group of point transform
tions, this happens whenq(w) satisfies Eq.~34!. Here we
give some solutions.

~i! q5(g21)5const, which corresponds to the equati
of statep5(g21)m for a barotropic fluid (1,g,2). In
this casek5(g22)2/2(g21), in particular, fork52/3 one
hasp5m/3, which characterizes a three-dimensional inco
pressible relativistic flow@9#.

~ii ! Another interesting solution corresponding tok52/3
is obtained by observing that Eq.~34! is satisfied by

q8~w!52~ 1
3 2q!, ~42!

which, in terms of the pressurep and energy densitym, reads

~m1p!mpp22mp~12mp/3!, ~43!

whose solution in parametric form is

m~t!5a~sinht2t!1b, ~a and b are constants!,

p~t!5~a/3!@sinht28 sinh~t/2!13t#2b. ~44!

For b50, Eq. ~44! is the well known equation of state for
completely degenerate Fermi gas@10#.

~iii ! If k52/3, Eq.~34! also admits the solution

q8~w!5 2
3 ~32A3q!~12A3q!. ~45!

Using Eq.~3!, this becomes

~p1m!
dq

dm
5

2

3
q~32A3q!~12A3q!, q5

dp

dm
~46!
ic
l-

-

-

which yields

q5
1

3 S 32Am2b/a

12Am2b/a
D 2

, ~47!

and

p5
m2b

3

129a~m2b!21/2

12a~m2b!21/2 ~a and b are constants!.

~48!

This pressure law~with b50! has been derived by Tolma
in searching for analytical solutions to Einstein’s gravit
tional field equations. In that context it has proved to
somewhat helpful, since for large values ofm its approxi-
mate form ism23p5const3m1/2 which is that for a highly
compressed Fermi gas@11,12#.

In Table I the Lie symmetry vector fields associated w
the foregoing equations of state are listed.

V. SIMILARITY SOLUTIONS

~i! Whenq5(g21) the infinitesimal generators are

W5Au1B, Q5
Aw

g21
1D,

gC5FA
g22

2~g21!
u1CGC.

~1! For A51, B5D50, andC arbitrary, the characteris
tic equation reads

dw

u
5

du

w

g21

5
dC

F g22

2~g21!
u1CGC , ~49!

from which we get the similarity variable

s5u22
w2

g21
, ~50!

and the similarity solution

C5S u1
w

Ag21
D CAg21

expF g21

2~g21!
wGF~s,C!.

~51!

If we make Eq.~51! satisfy Eq.~14! we obtain the ordinary
differential equation inF(z,C)

sFss~s,C!1@11CAg21#Fs~s,C!1
~g22!2

16~g21!
F~s,C!

50, ~52!

which transforms into a Bessel’s equation

j2f 9~j!1j f 8~j!1~j22n2! f 50, n5CAg21 ~53!

by setting
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TABLE I. Lie symmetry vector fields of Eq.~14!.

Sound speeds
Symmetry vector fields for
~1! barotropic,~2! Fermi, and~3! Tolman flows

~1! q5g21
LA5u

]

]w
1

w

g21
]

]u
1

g22
2(g21)

uc
]

]c
,

LB5
]

]c
, LC5c

]

]c
, LD5

]

]u
.

@LA ,LB#52
1

12g
LD , @LA ,LD#52LB2

g22
2(g21)

LC ,

@LA ,LC#5@LB ,LC#5@LB ,LD#5@LC ,LD#50.

~2! q5
1
3 (12e22w)

LA5Aqu
]

]w
1
)

2
lnS11A3q

12A3q
D ]

]u
2

u

3Aq
c

]

]c
,

LB5Aq
]

]w
2

1

3Aq
c

]

]c
, LC5c

]

]c
,

LD5
]

]u
.

@LA ,LB#52LD , @LA ,LD#52LB ,

@LA ,LC#5@LB ,LC#5@LB ,LD#5@LC ,LD#50.

(3)
12A3q

(32A3q)3
5e22w

LA5Aqu
]

]w
1
)

2
lnS32A3q

12A3q
D ]

]u

1S Aq2
2

)
D uc

]

]c
,

LB5Aq
]

]w
1Aqc

]

]c
, LC5c

]

]c
, LD5

]

]u
.

@LA ,LB#52LD , @LA ,LD#52LB1
2

)
LC ,

@LA ,LC#5@LB ,LC#5@LB ,LD#5@LC ,LD#50.
ri

-

e-
F5s2n/2f ~j!, j5
g22

2Ag21
s1/2. ~54!

For n integer we have the linearly independent solutions

C5expS 2
12cs

2

2cs
2 wD S u1

w

cs

u2
w

cs

D n/2

3JnS 2
12cs

2

2cs
Au22~w2/cs

2! D ,

cs5Ag21. ~55!

As the Riemann invariants constant along the characte
tic lines of Eqs.~9! and ~10! are defined by@9#

R65u6E dw

cs~w!
, ~56!

we see that Eq.~55! can be written as
s-

C5expS 2
12cs

2

2cs
2 wD S R1

R2D n/2

JnS 2
12cs

2

2cs
AR1R2D .

~57!

~2! For A5D50, B51, andC arbitrary, the characteris
tic equation reads

dw

1
5

du

0
5

dC

CC
. ~58!

The similarity variable and the similarity solution are, r
spectively,

z5u, C5eCwF~u,C! ~59!

with F(u,C) satisfying the equation

Fuu~u,C!2C@~22g!1~g21!C#F~u,C!50. ~60!

~ii ! The Fermi gas. In this case the expressions forW, Q,
andgC are

W5Aq~Au1B!, Q5A
)

2
lnS 11A3q

12A3q
D 1D, ~61!
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gC5S 2
Au1B

3Aq
1CDC.

~1! For A51, B5D50, andC arbitrary the characteristic
equation is

dw

uAq
5

du

)

2
lnS 11A3q

12A3q
D 5

dC

S 2
u

3Aq
1CD C

. ~62!

The similarity variable is

s5u22w2, w5
)

2
lnS 11A3q

12A3q
D , ~63!

and the similarity solution reads

C5A~1/3q!21~u1w!CF~s,C!, ~64!

whereF(s,C) satisfies the ordinary differential equation

sFss~s,C!1~11C!Fs~s,C!1
F~s,C!

12
50. ~65!

If we set

F5s2C/2f ~j!, j5As/3, ~66!

Eq. ~65! becomes a Bessel’s equation of ordern5C

j2f 9~j!1j f 8~j!1~j22n2! f ~j!50, ~67!

therefore,C reads

C5S 1

3q
21D 1/2S u1w

u2w D C/2

Jn~A1
3 ~u22w2!. ~68!

The expressions foru6w appearing in Eq.~68! are nothing
more than the Riemann invariants

R65u6
)

2
lnS 11A3q

12A3q
D . ~69!

~2! For A5D50, B51, andC arbitrary, the characteris
tic equation reads

dw

Aq
5

du

0
5

dC

S 2
1

3Aq
1CD C

.

The similarity variable and the similarity solution read, r
spectively,

s5u, C5S 1

3q
21D 1/2S 11A3q

12A3q
D ~)/2!C

F~u,C!,

with F(u,C) satisfying the equation

Fuu~u,C!2~C221/3!F~u,C!50.

~iii ! When one considers the Tolman pressure law one
 as

W5Aq~Au1B!, Q5A
)

2
lnS 32A3q

12A3q
D 1D,

gC5F S Aq2
2

)
D ~Au1B!1CGC.

~1! For A51, B5D50, andC arbitrary, the characteris
tic equations are

dw

Aqu
5

du

)

2
lnS 32A3q

12A3q
D 5

dC

F S Aq2
2

)
D u1CGC

.

The integration of the first equation yields the similarity va
able

s5u22w2, w5
)

2
lnS 32A3q

12A3q
D .

The similarity solution is

C5A~32A3q!~12A3q!~u1w!CF~s,C!,

whereF(s,C) satisfies the ordinary differential equation

sFss~s,C!1~11C!Fs~s,C!1
F~s,C!

12
50,

with the positions~66! we obtain

C5A~32A3q!~12A3q!S u1w

u2w
D C/2

JnSAu22w2

3
D ,

whereJn is the Bessel’s function of ordern5C ~n integer!.
The Riemann invariants this time read

R65u6
)

2
lnS 32A3q

12A3q
D 5u6w;

so that the similarity solution can also be written as

C5A~32A3q!~12A3q!S R1

R2D C/2

JnF S R1R2

3
D 1/2G .

~2! For A5D50, B51, andC arbitrary, the characteris
tic equations read

dw

Aq
5

du

0
5

dC

~Aq1C!C
.

The similarity variable and the similarity solutions are, r
spectively,

s5u, C5
~32A3q!~)C13!/2

~12A3q!~)C11!/2
F~u,C!

whereF(u,C) satisfies the ordinary differential equation

Fuu~u,C!2 1
3 ~C1) !~3C1) !F~u,C!50.
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VI. CONCLUSIONS

A well known mathematical technique to obtain explic
solutions consists of finding the Lie groups which leave
equation under consideration invariant. In particular,
equation describing a relativistic flow in the hodograph pla
contains an ‘‘arbitrary element,’’ the sound speedcs(w), so
that the conditions for the existence of Lie symmetries
expressed by the additional Eqs.~32! and ~33! connecting
q5cs

2 and w ~the enthalpy density!. Once these are solve
we can determine all the possible forms of the sound sp
which admit a four parameter goup of invariance. Th
straightforward calculations permit one to obtain similar
solutions.

This procedure, which may appear more mathematic
than physically motivated, gives some interesting and
couraging results in that the solutions of the additional eq
s

l

-

-

e
e
e

e

ed
n

ly
-
-

tions lead to some well known pressure-energy density r
tions, i.e.:~1! the equation of state for a barotropic flow,~2!
the Fermi pressure law for a completely degenerate rela
istic gas, and surprisingly enough,~3! the Tolman equation
of state with which Einstein’s field equations also admit an
lytical solutions. The above mentioned pressure laws do
exhaust the solutions to Eqs.~32! and ~33! and other physi-
cally interesting equations of state may be found by furt
analysis.

Moreover, we found that Eq.~14! admits an infinite group
of symmetries in correspondence to the nontrivial press
law ~39! which satisfies the conditions for a real relativist
flow. In this case, Eq.~14! is integrable in an elementar
way, while the system~9! and ~10! can be decoupled into
two inviscid Burger’s equations. This result might be use
for testing numerical codes.
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